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1 INSPIRATION

The position and direction determination of an auton-
omous robot is done in many different ways. An often
used method is to detect and recognize predefined
structures (landmarks) in the environment, used for
deducing position and orientation. The characteristics
of the landmarks and the strategy to detect them are
often known in advance and directly implemented
into the algorithm. A “run time” adaptation can only
be done in a limited manner by adjusting parameters
compensating some foreseen influences like the
change of ambient light or distorted shape of the land-
mark. Nevertheless, the algorithm remains fixed on
the pre-programmed landmark characteristics and the
strategy to find them.

1.1 Adequate concepts

A real outdoor environment offers a huge quantity of
information like colors, light, direction, distance, etc.
Human beings and superior animals are able to pro-
cess this flood of information and abstract concepts
like door, road and object, which are used to handle
the environment on a higher level. Thus, the concepts
depend strongly on the task and the sensor abilities
and are therefore different for humans and robots.

1.2 Use of concepts in different layers

The application of concepts is not new and many rec-
ognition algorithms (specially in Artificial Intelli-
gence) leave the creation of concepts to the machine
in order to increase the flexibility and to reduce pre-
wired and therefore unsuitable influences by the
designer. Automatic concept creation is normally
applied on a quite high abstraction level for example
to recognize objects or situations, based on sensor and
status information which are preprocessed in a more
conventional manner. Such preprocessing always
leads to a loss of (probably important) information
reducing the power of automatic concept creation.

The purpose of this paper is to tackle this problem by
moving the automatic concept creator as close as pos-
sible to the raw sensor signals, see also [Kuipers and
Pierce, 1997]. In an idealistic case, such a system is
completely independent of the type of sensors,
because any restrictive preprocessing is suppressed.
Every kind of statistically rare event perceivable by
the sensors can be used as a landmark, developing a
very high adaptability of the autonomous robot sys-
tem to the environment. We want to investigate the
limitations and how close an experiment can approach
this theoretical case by applying only one but very
simple concept in a experiment.
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2 DEFINITION OF THE EXPERIMENT

This chapter gives a overview of the structure and
algorithm used to carry out the experiment.

2.1 Aim

A robot moves randomly in an unknown static envi-
ronment, repelled by obstacles and recording infor-
mation from its sensors in order to recognize
significant signals as landmarks. The robot has no
prior knowledge about the environment nor the type
and character of its sensors. The robot should learn to
recognize significant signals as landmarks, store them
into a memory and compare them with new land-
marks in order to recognize again familiar situations
and positions.

The experiment shows that a robot is able to stabilize
the odometry error allowing continuous movement
with a constant precision. Moreover, the robot can use
its own self-discovered landmarks to create a topolog-
ical map, allowing it to navigate in an unknown envi-
ronment.

2.2 Experience set-up

We use a Khepera simulator written by Olivier Michel
[Michel, 1996] to test the algorithm in its first state. In
the future a real Khepera robot (see fig. 2-1) will be
used to prove the feasibility of the experiment. The
simulated robot is equipped with eight short distance
sensors (about 5 cm range), eight ambient light sen-
sors, a compass and a linear camera which reads a
horizontal line of 64 pixels corresponding to 36
degree in front of the robot. This can be used to recog-
nize obstacles and wall contours in front of the robot.

The environment consists of a field of about 15 x 15
times the size of the robot, containing obstacles and
light sources.

2.3 Algorithm overview

The signals coming from different sensors are par-
tially mixed together and directed into several unsu-
pervised classifiers, creating feature regions of the
input space (see fig. 2-2). All classifiers are neural
networks but of different types like ART or LVQ pro-
ducing different feature distributions. These features
are analyzed by the statistics module, which selects
only rare and “usable” features and stores them with
the estimated robot position. These entries are com-
pared with new incoming features. In case of a suffi-
cient match, the robot position will be corrected to the
position previously stored with the landmark.

3 NORMALIZATION

Our aim is to use raw sensor signals and avoid signal
preprocessing as far as possible. We nevertheless have
to normalize some signals as described below.

3.1 Distance and ambient light sensors

Because of the poor quality of the distance and ambi-
ent light sensors, a simple two state value is used to
distinguish far and close obstacles or bright and dark
regions. The threshold is selected in an empirical
manner.

3.2 Camera

The image of the camera was simulated and calcu-
lated by a pseudo reflectance image model [Song and
Choi, 1996], assuming a diffuse light source and
Lambertian object surface (matte surface, no texture).

The measured light intensity (c) can be approximated
by the equation in fig. 3-1, using as variables object
distance (d), ambient light (a), object reflectivity (r)
and the angle of the surface to the camera (α). Each
object transition causes a strong change in d and α,
which is very suitable for edge detection.
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 Fig. 2-1: Equipment of the extended Khepera robot
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 Fig. 2-2: Diagram of the sensor signal data processing and recognition of significant features
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 Fig. 3-1: Calculation of light intensity, first approximation
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Edge detection is done by a discrete double spatial
derivation and normalization of the obtained image
(see fig. 3-2). After that, the image is stretched until
the extreme edges reach the border of the image. This
conversion makes the image stable against rotation
and any kind of movement, as long as the same obsta-
cles (contours) are visible to the camera.

The result is prepared in two different ways to feed
two neural networks (NN). The NN-A gets the posi-
tion of the edges, filtered by a gaussian to smooth out
minor position changes of the contours. The input
neurons of NN-B are grouped according to the num-
ber of observed edges. Only one group can be acti-
vated at the same time. The individual neuron activity
depends on the distance of the corresponding edge to
the left wall. This preparation makes the NN-B very
sensible to a change in the number of edges, which is
often neglected by the NN-A if the edges are close to
each other.

4 CLASSIFICATION

In order to recognize unknown and rare events, unsu-
pervised classifiers like neural network must take care
of small classes with very few entries. Such classifiers
must neither forget classes nor combine them with
each other. Two unsupervised classifiers are used in
this project up to now. See also [Hertz et al., 1991] for
a complete overview.

4.1 ART

The Adaptive Resonance Theory (ART) neural net-
work was designed by S. Grossberg [Grossberg,
1988] and is well known for the mentioned capability
(see also [Fausett, 1994] [Pandya and Macy, 1996]).
Nevertheless we do not know about ART application
extracting rare classes for landmark classification in
mobile robot. The ART NN is designed for clustering
vectors, independently of the order of input patterns.
The degree of pattern similarity in a cluster and there-
fore the amount of clusters can be controlled by a vig-

ilance test. A new cluster (neuron) will be created, if a
new input pattern fails the vigilance test with the
existing clusters. This helps to overcome the stability-
plasticity dilemma, this means the ability to learn con-
stantly new experiences without ignoring old ones.

4.2 Modified LVQ

An other method for unsupervised classification is the
Learning Vector Quantization (LVQ), designed by T.
Kohonen [Kohonen, 1990]. It is here slightly modi-
fied to fit the conditions described at the beginning of
this chapter.

• The amount of classes (neurons) are not determined
from the start. Each input pattern “sufficiently” dif-
ferent from the existing clusters creates a new class
(similar to the ART theory).

• The stability (flexibility to new input patterns) of
each existing class is controlled by the amount of
entries (the more entries, the more flexible).

4.3 Feature generation

Each classifier produces an independent and continu-
ous stream of class-numbers (called class stream)
during the movement of the robot. Our experiment
uses four classifiers, so we get four asynchronous
class streams. Classifier III and IV process distance
and ambient light information. We call features the
four classes which are generated at the same time; a
feature represents a certain sensor situation (see
fig. 4-1).

5 CLASSES BECOME LANDMARKS

The classification module produces about 50 features
per second. It is quite impossible to discover a definite
feature corresponding to a significant robot situation.
The class streams are always a little bit shifted with
respect to each other and they contain extra noise as
well.
Therefore significant features have to be discovered
by independent analysis of each class stream. This is
done by a simple statistics module, selecting a trigger
class (see fig. 4-1) in the following way:

• The occurrence of a class has to be small (<0.01%).
• A class must not appear more than three times in a

stream.
• A class must not appear again within a certain dis-

tance to its previous occurrence. The distance is cal-
culated by odometry.
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Such trigger-classes are quite rare and they generate a
landmark containing a stream of features (30 in our
experiment) and other informations like estimated
robot position, time, etc. Our simulated robot environ-
ment contains about 300 landmarks; however not
every landmark will be used.

6 COMPARISON OF LANDMARKS

The classes (4 x 30 in our experiment) stored in a
landmark are absolutely not identical when generated
several times by the same cause. However, the
Weighted Levenshtein Distance measure (see later) is
used to compare the fundamental character of class
streams and to identify probably identical landmarks,
even if the contained classes are quite different.

6.1 Weighted Levenshtein Distance (WLD)

The WLD is calculated with an algorithm developed
by V.I. Levenshtein [Levenshtein, 1975] to compare
two strings of discrete symbols in a tolerant way (like
text search). Let’s call the two strings a and b with the
length of i and j, so the WLD can be defined in the
following recursive manner:

The WLD is defined as the minimum total cost
required to convert a into b. There are only three edit-
ing operations:

• Deletion of an existing symbol (costdel)
• Insertion of a new symbol (costins)
• Substitution of a symbol (costsub)

The recursion is terminated with the following end-
ing, if at least one string becomes empty:

This recursive formulation is very calculation inten-
sive because every operation will cause three sub-
operations. These calculations can be drastically
reduced by organizing temporary results in a table
[Reuhkala, 1983].

The substitution cost (costsub) is calculated by mea-
suring the euclidean distance of the two concerned
classes in the sensor input space. The class numbers
are not used in this calculation, since they are chosen
arbitrarily and contain no distance information.

To make global string shifts invariant, the WLD algo-
rithm can be changed so that deletion and insertion
cost zero at the beginning and at the end of the strings.

6.2 Matching algorithm

A freshly received landmark will be compared with
landmarks only containing the same trigger-class. Fig
6-1 shows the sensor signals proceeded by e.g. two
different classifiers (I and II). The classifier II discov-
ers a trigger class #2 (framed with a bold rectangle),
which appears even twice by chance. Therefore, all
class streams (I and II) are compared with the corre-
sponding class streams of the stored landmarks which
contain the same trigger class. Our example shows
three suitable landmarks (indicated by A, B and C).
The comparison of the corresponding class streams is
measured by the Weighted Levenshtein Distance (see
also paragraph 6.1).

Result of the three landmarks comparison:

• Landmark A was generated due to the same trigger
class (#2). However, all class streams are very dif-
ferent indicating a complete dissimilar landmark.

• The landmark B is different as well (mainly
because of class stream I). This can happen, if the
sensors-group analyzed by classifier II are not sen-
sitive for a specific dissimilarity. That's why several
class streams are analyzed independently.

• Landmark C is determined as identical to the
received landmark, because all class streams are
sufficiently similar.

7 REDUCING MOVEMENT DIMENSION

The comparison algorithm explained in chapter 6
shows how an already stored landmark can be recog-
nized. For that, the robot needs to hit the landmark. A
randomly moving robot will often pass close land-
marks on its way without hitting them. A navigator
“hunting” landmarks can’t be applied, because the
needed position precision to hit a landmark is often
beyond the precision of the odometry. Moreover, the
needed information for data processing would break
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the restriction of avoiding any prior knowledge of the
sensors configuration.

An other possibility to consider this assumption is to
reduce the freedom of the robot motion to some given
paths. The following fitness function can be used to
train a pilot with a NN in order to reduces the robot
freedom to some lines by satisfying the following
assumptions (see fig. 7-1):

A The robot has to move (cover a certain trajectory
over time). This excludes stops, turning on the
same place and bumping into obstacles.

B Any kind of active sensor event produces a positive
feedback. This has basically two effects:
B1: The robot is attracted by walls and obstacles,
through the short range distance sensors.
B2: The robot is attracted by obstacles (in general
contours) located in the view of the camera.

The rules B1 and B2 are contradictory because the
robot has to give up the wall (or obstacle) attraction to
aim an object (or contour) in the free space. Therefore
the rules for B1 and B2 can not be combined in the
same fitness function and has to be used separately to
train two different pilots. The pilots are applied ran-
domly, influenced by the presence of walls and con-
tours. The realization of these two pilots can be done
for instance by a neural network. However, at this
time the two pilots are directly programmed to save
time for more important parts of this experiment.

The fig. 7-1 shows the possible paths (gray lines) of a
robot guided by the two pilots as explained above.
The robot runs along walls or steers towards corners
(contours), if they appear in the view of the camera.
The selection is done randomly. This pilot system
trained by the mentioned fitness function considers
the restriction of avoiding any prior knowledge of the
sensor configuration.

8 EXPERIMENT RESULTS

The described algorithm was tested on a simulated
robot environment containing static obstacles (see
fig. 8-1). A pilot guides the robot along walls and
towards obstacles if they appear in the view of the
camera (see chapter 7). The resulting path which is
constantly used is shown by shadowed lines.

During this limited movement, four classifiers extract
about 300 landmarks from the camera, compass and
distance sensor signals. The reason why some spots
are chosen as landmarks is not always obvious. How-
ever, only twenty of the most convincing landmarks
are sketched in fig. 8-1 by a cross to keep the figure
clear. Some of them were generated because the robot
was located in a corner which activated more distance
sensors as usual. Another reason is the unexpected
appearance of obstacles in the camera view.

Each landmark is stored with its estimated position
which can be used to calibrate the actual robot posi-
tion. Every time the robot recognizes an already
known landmark on a plausible position, the current
robot position is corrected to the position stored with
the landmark. The result is a bounded odometry error.
Refer also [Maechler, 1997] for an other method to
limit odometry error).

The lower, filled graph in fig. 8-2 shows the absolute
odometry error (five vertical units is one robot diame-
ter). The upper graph shows the correction with the
same scale (but shifted up by one unit). Every positive
peak of the correction decrease the odometry error.
Notice that there are also confusing (bad) landmark
indicated by negative peaks. Such mistakes increase
the odometry error, but they are quickly patched up by
suitable (good) landmark corrections.

9 FUTURE WORKS

The careful reader would have probably noticed that
the position assignment to new landmarks breaks the
mentioned restriction of avoiding any prior knowl-
edge. In fact, this “cheat” was done in this experience,
but will be corrected soon by dividing the “learning
time” into the following three phases (see fig. 9-1):

 Fig. 7-1: Robot path attracted by walls and contours

 Fig. 8-1: Robot environment with created landmarks
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Used paths

Obstacles

 Fig. 8-2: Stabilized error due of landmark synchronization

“good” landmarks
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odo. error
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landmark
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1) In the exploration phase, signal events are classi-
fied and most of the landmarks are created, but
without assigning them to an estimated position.
The robot will never quit this phase, but it will
decrease the activity in the absence of new events.

2) In the coordination phase , near landmarks which
are passed in short time are linked together with
local odometry information. This behavior creates
many groups of linked landmarks. The relative
position of the landmarks inside a group is known,
but no position information about the group is
available.

3) In the strategy phase, the groups are linked
together by active search. The robot will choose a
big group and actively search other groups or land-
marks in order to expand the original group.

Phase 2 and 3 can be explained by the “underground
effect”. New residents of a big town know only the
near environment of some underground stations
(groups). No prior surface-link between stations exist.
With time, the “station area” (groups) will expand due
to explorations and other known stations will be dis-
covered, completing and merging the topological map
of the whole town.

The result is a distorted representation of the environ-
ment (see fig. 9-2) because of the inaccurate links
between landmarks (and groups as well). However,
landmark following is possible and completely suffi-
cient for navigation.

10 CONCLUSION

This paper showed that a robot can learn to stabilize
its odometry error without any prior information
about the environment or its sensor ability. The algo-
rithm does not need to use human-defined concepts. It
extracts and considers only adequate environment
characteristics which make the algorithm adapt to
new and unknown surroundings.

The three learning phases bring forth an improved
interaction between the agent and its environment
which is already done by the pilot. This improves the
sensor signal quality and enables the robot to proceed
with a useful task by actively navigating with its own
concepts.
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